
How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

 
 
How to build a plugin for Servoy  

– A step by step tutorial brought to you by Servoy Stuff 
 
PART 2 

F. The public API is your friend 
In the first part of this tutorial we went through the tedious details of configuring our Servoy/Eclipse 
environment, and set-up our project “WhoisPlugin”, now it’s time to actually build the plugin. 
 
But we need first to understand a bit more of the API interfaces we are going to use. 
The first one is the IClientPlugin interface and the second one is the IScriptObject interface. 
 
Start by having a look at the javadocs of the IClientPlugin interface (refer to the javadocs online: 
http://www.servoy.com/docs/public-api/ and choose the version that correspond the best to your 
target Servoy version – fortunately for these 2 interfaces, there isn’t any notable changes between 
each version– meaning our plugin should work well from Servoy 3.5.x to the latest version), click on 
the IClientPlugin link in the “All classes” frame, you will get this html page: 

 
 
You can see that it states that this is the “Base interface for all client plugins.”  

1/24 

http://www.servoy.com/docs/public-api/


How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

2/24 

Just what we are looking for! 
 
Note: For those of you not too fluent in Java (but who really want to know more), you should realize 
that an “interface” is basically a contract: you can build or use classes that will “implement” this 
contract, and you will be able to refer to any kind of objects by their interface regardless of what kind 
of object they truly are. This is known as “Polymorphism” and this is a very powerful and useful 
feature of Java (and most OO languages).  
 
For example imagine that you have an interface of type Person with some properties like “name”, 
“sex”, whatever…, and some methods like “walk()”, “talk()” etc…, now you can build (implement) lots 
of very different kind of person based on this interface, like a ServoyUser for instance or a TaxiDriver 
or a ServoyManager, and they each might have different methods attached… A ServoyUser might have 
a “writePluginForServoy()” method, when a TaxiDriver will have a “dontBehaveLikeRobertDeNiro()” 
method and a ServoyManager could have a “tryToIgnorePeopleSayingTheServoyDocNeedsUpdating()” 
method…. 
 
To be valid “People” in any case, these classes will need to implement the methods that you have 
declared in the People interface. In fact, the java compiler will enforce that! 
 
Now the good part is that, depending on what you want to do with these objects, you might prefer 
considering them as simple “People”, in which case you will get access to the “name” and “sex” 
properties and to the “walk()” and “talk()” methods regardless of whether you are using a ServoyUser 
a TaxiDriver or a ServoyManager object (but if you refer to them as People you will not have access to 
their “specialized methods”, unless you perform a “cast”. 
You can Google “java interface” for more information on this (overly discussed) subject…  
 
 
 
So now that we know that the IClientPlugin interface is the “Base interface for all client plugins” we are 
going to implement  it.  
 
*“implement” really means to “code” the behaviour, but you should get used to the term, since it is 
more precise and it is used widely when referring to the fact that you “fulfill the contract” of an 
interface, in fact you will often find classes named something like “MyInterfaceImpl” – this is to 
indicate that it is a “class that implements the MyInterface contract”. 
 
 
 

G. The IClientPlugin interface 
Now, let’s have a look at the methods that we need to code to “fulfill the contract” in the javadocs 
(javadocs are nothing but simple yet effective html documentation built automatically - yes 
automatically! - from special comments that you insert in your code), you can find them in the table 
called “Method Summary”: 



How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

 
 
The name of the methods is pretty self-explanatory: 
¾ getImage() should return an Icon - this is the one you will find in the Solution Explorer in 

developer under the plugins node for your plugin. 
¾ getName() should return a String – of course it will tell Servoy the name of the plugin (the one 

you will see in the developer node and the one you will use in Servoy with the syntax 
plugins.nameOfMyPlugin.something() 

¾ getPreferencePanels() should return an array of “PreferencePanel” objects, this one is a lot less 
used, basically you only need to use it if you want to add a panel of configurable options in the 
“Application Preferences” dialog of the Servoy Smart client. We are not going to use it today 
(maybe for another plugin in another tutorial), if you are very curious about this and want to 
see an example, look at the sources of the Agent plugin included I the /plugins/agent.jar file. 

¾ getScriptObject() should return an object of type IScriptObject – aha! That’s the one which will 
do all the scripting work for you when you use scripting in Servoy: the core object of you 
plugin, so we will look at it in more details since we will implement it. 

¾ initialize() returns nothing, this time Servoy will call that method for you, giving you access to 
the client by way of an IClientPluginAccess object parameter (we will look at this one later). 

3/24 



How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

4/24 

 
But wait! There is more, if you look carefully (because you do if you are a serious java programmer), 
you will see that the IClientPlugin interface also inherited* from the IPlugin interface (a more general 
interface that one), this IPlugin interface has defined 3 methods: 
¾ getProperties() should return a Properties file (this is a standard java object, usually it is a set 

of keys/values pair, you often find them as “.properties” files with prefix.key=value lines), this is 
where Servoy will get some more information on your plugin, but most of the time all you will 
have to give it is the “DISPLAY_NAME” value – which believe it or not, will be the name of your 
plugin. 

¾ load() is a method that Servoy will call on your plugin when the application starts, apparently – 
not sure exactly when this is in the sequence of events in the lifecycle of a Servoy application – 
this is where some in-depth sequence diagram would sure help, does someone in Servoy is 
listening? 

¾ unload() is a method that Servoy will call on your plugin when it will get rid of it (apparently “on 
application shutdown” – see above for same kind of comments regarding the obscurity of that 
event in the Servoy lifecycle). Anyway, this is where you will dispose of the objects that you 
created or kept in reference, to avoid memory leak. 

 
And finally, you should note that the IClientPlugin interface is also inheriting* from 
PropertyChangeListener, meaning that it might be called on changes of some bound properties with a 
call to the (only) method of the interface: 
¾ propertyChange() will be called by Servoy when some bound properties have changed, you will 

get a PropertyChangedEvent in parameters with the option to act on it. These bound properties 
are the one you will use in your “PreferencePanels” if you have created any. Again, see the 
Agent plugin to see how this can be used. 

 
 
* Interfaces can inherit from other interfaces, building a kind of hierarchy of interfaces which will add 
some specialization to the broader use of the parent interface.  
In our “People” interface example, we could have designed a “ServoyPeople” interface “extending” the 
“People” interface, meaning that it would have added some specialized methods to it: a ServoyPeople 
for example would have defined a “discussTheUrgencyOfUpdatingTheServoyDoc()” method, and each 
derived objects like ServoyUser and ServoyManager would have had to implement that method 
(although in some very different way ;-). 
 



How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

H. Implementing the IClientPlugin interface 
 
Now is the time to create our plugin by implementing the IClientPlugin interface first.  
To do this, we will create a class and name it after our plugin (this is not required but it’s best to name 
the class after what it is supposed to represent!). And to follow the best practices we will place our 
classes into a nice Java “package”*.  
 
* A package is a neat way in Java to organize libraries coming from arbitrary sources and make them 
work together without problems of “Name collision”. It is basically a hierarchy of folders in your sources 
that will isolate your classes from those of others that might have the same name (for those of you 
who are XML gurus, this is very similar to namespaces).  
 
To better understand Java packages, think of this silly example: 
Imagine that there is two java developer wannabe who wrote a clever Date class.  
Imagine that they didn’t use any java package to put them into.  
Now comes a third developer, building a java application (a java stack) using different utility libraries, 
and he integrates both of the Date libraries inside his application (maybe even without knowing it, 
because they might be used by some other libraries themselves).  
Now when he wants to use a Date class which one is it going to be? The compiler will not know, and in 
Java, when the compiler doesn’t know which class is which, that means trouble and generally some 
sort “ClassCastException” or “ClassNotFoundException” or some other niceties…  
This is where java packages come to the rescue, by building a hierarchy of folder and using “fully 
qualified names” (full means prefixed with their packages) to access our classes the compiler will 
know which one is which. 
There will be a “com.wannabe.first.Date” class and a “net.wannabe.second.Date” class, two totally 
different classes, you see? 
 
So, we will start by adding some “packaging” to our sources and we will then add classes to them. 
To do that, right click on the “src” node in the Package explorer and choose “New > Package”: 

 
 
Now, let’s give our package some name in the following window: 

5/24 



How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

 
 
Note: You can name it whatever you want but, by convention, the package hierarchy should reflect 
your domain name (if you have any) in reverse (from domain to sub-domains), so for example, I prefix 
all the development I do for Servoy Stuff with net.stuff.servoy (because my web site is servoy-
stuff.net) – each dot “.” being a separator will create a new folder in the “src” folder. Then I follow with 
the type of thing this is (plugins or beans) and then the name of the stuff itself.  
You might thing that this is an awfully long name, but this is pretty standard package name: it will 
avoid for sure any name collision with any other libraries, and anyway you will probably never have to 
type the “fully qualified name” in your code, Eclipse will automatically do that for you (by adding the 
package name on top of your java file and by adding the relevant “import” with the “fully qualified 
package name” for the classes you use). 
 
Now our Package explorer should look like this: 

 
 

6/24 



How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

Let’s add our plugin class now: right-click on the package and choose “New > Class” 

 
 
This brings the “New class” dialog window, believe it or not, this is where most of the code in your 
class is going to be generated: 

 
 

7/24 

Note that the “Source folder” is already filled with the correct location of our sources “WhoisPlugin/src” 
(in our workspace); note also that the “Package” is the one we have selected. 



How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

Now we will type the name of our plugin “WhoisPlugin”, - keep the Modifiers as is, our class will need 
to be public so that Servoy will find it, it will not be abstract because it will concretely implement 
something and it will not be final because you never know when the time will come to extend it.  
The superclass (the “parent” of our class) will only need to be “java.lang.Object” (there will be time 
when you will have a whole library of “generic plugin” classes that will serve as parent objects for your 
new plugins but this isn’t the case yet ;-) 
 
What is really important here is to tell Eclipse that we want our new class to implement to IClientPlugin 
interface, so we click the “Add…” button in front of the “Interfaces:” list area. 

 
 
All you have to do here in this clever little dialog box is to type the first letter of the interface you’re 
looking for and Eclipse will show you “as you type it” the found interfaces (it is clever to a point where 
the next time you open this window it will remember what you did before and will show you the last 
chosen interfaces).  
 
In the text box, type the first letters of IClientPlugin and you will quickly see the line “IClientPlugin - 
com.servoy.j2db.plugins” appear in the “Matching Items” box.  
Double click on this line and click “OK”, the interface should have been added to the previous dialog, 
like that: 

8/24 



How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

 
 
We don’t want our class to be an application, so no need for a main() method, don’t check that. 
We don’t care about constructors from superclass (the java.lang.Object default constructor will do), so 
leave that unchecked. 
We DO want to inherit abstract methods because then Eclipse will generate the “method stubs” from 
the interface(s) we selected. 
And it’s nice of him to propose to generate comments, so we check that too - the way it will generate 
comments really depends on the state of your Eclipse installation, it can be totally customized – follow 
the link “properties” to see how if you want. 
 
We finally click the “Finish” button to get the resulting WhoisPlugin class generated for us, placed in 
the right package and opened in the java editor, we did it!  
Well almost. 
 

9/24 



How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

Your Eclipse IDE should now look something like this: 

 
 
Now there is a lot to see in this screen, there is a lot to talk about to reassure those of you who glare 
at this kind of screen for the first time. You should believe me that everything here is laid out for your 
convenience and to assist you in your task, everything is here only to help, not get in your way! 
 
First note that the “WhoisPlugin.java” source is already filled with code, meaning that we will only 
have to type a minimal amount of code to implement our plugin. 
 
In the “Package” explorer, the class we created is now in the correct package. And depending on 
whether your Outline view is opened (the right panel); you can see a tree of all the methods that have 
been inserted. 
 
Depending on the preferences set up for your comments they might be there or not, but as you can 
see on the capture above anyway, there are some strange “/* (non-Javadoc)” comments – they are 
here to tell the javadocs system (remember the system that can generate automatic html doc from the 
comments in the java source file?) that the comment is to be find in a superclass or an interface, and 
there is also a reference to the relevant superclass or interface method in the special tag “@see”. 
 
You can also see that since we created our class in the “net.stuff.servoy.plugins.whois” (or whatever 
you chose to name yours) package, the first line of code is declaring it. 
 
Then there are some lines of code for the “imports”, - these are there so that you won’t need to type 
fully-qualified names each time you use a class, they allow you to use a syntax like “new Date()” and if 

10/24 



How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

11/24 

the “import java.util.Date;” or “import java.util.*” is here on top of the file, the compiler will know 
precisely which Date class you are referring to. 
 
Note also the little + or – sign in front of some lines, this indicates that some part of the code is 
wrapped, (in which case you can unwrap it with the + sign) or unwrap (in which case you can wrap it 
with the – sign) – you get the same one in the JavaScript editor in Servoy. 
This is Eclipse unified interface to you, and in fact you know more about the Java editor than you 
think since it is based on the same rules as the JavaScript editor your use in Servoy, only this time 
adapted/extended for Java, as we will see later… 
 
Now the declaration of the class is the line: 
public class WhoisPlugin implements IClientPlugin { 
 
- of course you will have a corresponding close bracket “}” at the end of the file to close the class 
definition) 
 
This is the correct syntax to tell the compiler that your class will be accessible from outside of your 
library (public), that its name is WhoisPlugin (and in that case the name of the file will have to be 
“WhoisPlugin.java”, and will be compile as “WhoisPlugin.class”) and that it “implements” the 
IClientPlugin interface, meaning that you (and others) will be able to use it exactly as any other class 
implementing this interface regardless of what’s inside, which is exactly what Servoy is going to do, 
considering only its interface (and thus the set of methods that this interface declare) and nothing else 
that could be programmed inside, thus using your class as a Plugin! 
 
Ignore the “/* (non-javadocs)” comments and you get right to the first method: 
 

public Icon getImage() { 
 // TODO Auto-generated method stub 
 return null; 
} 

 
Note the single line comment starting with “// TODO” 
This time this is Eclipse telling you what you have to do!  
And a nice thing about this is that you can view all the corresponding tags, called “TASKS” in the 
“Tasks” view, and see instantly what you have left to do.  



How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

Click on the “Tasks” tab in the bottom pane, it will show you all the tasks: 

 
 
You see that you have quite a few things to do to, and this panel will show them all, and tell you in 
which file it is, and precisely at what line it is. You can double-click on any of these lines and it will go 
straight to it, opening the file if necessary. 
 
Note that you can add your own TODO tasks anywhere in your own sources, to trace what’s left to do, 
it happens when you are doing a complicated task that you will break in lots of little one, and each 
time you leave a blank, its good to place one of these tasks markers so not to forget them after that. 
All you have to do is create a single line comment // and type TODO in capital letters, as soon as you 
save the file, the task will be added to the Tasks view. 
 
Note also that there are other tasks markers (by default there is FIXME – with a highest priority – and 
XXX – undefined task) and that you can also create your own in the “Preferences/Java/Compiler/Task 
tags” dialog – refer to Eclipse doc to know more about tasks. 
 For example, I usually add a CURRENT tag, and a DONE tag, just to keep trace of things in my 
sources… 
 
So now, you know precisely what’s left to do: replace all the TODO tasks in the file by proper code. 
 

I. One method at the time 
 

1. getImage() 
First method, getImage(), its “signature” (the way it is declared) says that we must return an object of 
type “Icon”. If you guessed that it’s going to be the icon of you plugin, the one that will show in the 
Solution Explorer of Servoy under the plugins node, you guessed right.  
 
But what kind of object is an Icon? If you have doubts, you can first try moving your mouse over the 
Icon word; it will show you a little tooltip with a definition, coming straight from the javadocs system: 

12/24 



How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

 
 
So now, you know that the Icon is more precisely a javax.swing.Icon (a standard Swing objet then). It 
is in fact an interface, and you will be able to find a wealth of examples and usage on the internet by 
googling “javax.sing.Icon”, starting with the full javadocs of the interface (that you can find here: 
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/Icon.html) – remember, the API is your friend! 
There are lots of information (usually) in the javadocs, especially the one from the standard java 
language (unfortunately not the one from Servoy), and it’s quite easy to find ways of using it.  
 
For example, if you follow the “ImageIcon” link of the see also part of the Icon javadocs, you will see 
one of the standard classes implementing the Icon interface, and in the javadocs of this class there is a 
link to the “How to Use Icons” tutorials (I told you the API is your friend!).  
I’m not going to tell you all the possible ways to create an Icon object, but we are going to use a fairly 
standard way (for a library), which is to use resources from the project itself. 
 
First, we need and image (a gif, jpeg or png image) of a maximum size of 16x16 pixels (this is an icon, 
not a poster!), so get your best loved image editor, and create it, or go to the internet and find some 
open source icon resources to chose one. In case you are definitively too lazy to make your own or 
even search for one, you will find it in the source of this project.  
 
But beware! I’m no artist, so here it is: 
  
Told you ;-) 
 
You can download it here: http://www.servoy-stuff.net/tutorials/utils/t01/whois.png  
 
Now we’ve got an image, lets place it in our project in our package, or even better in a special “folder” 
inside our package (to keep things tidier☺) 
 
So let’s create a package by right-clicking on the “net.stuff.servoy.plugins.whois”, choosing “New > 
Package” and typing: net.stuff.servoy.plugins.whois.images 

13/24 

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/Icon.html
http://www.servoy-stuff.net/tutorials/utils/t01/whois.png


How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

Now let’s drag and drop our image from our disk directly inside the package in the Package explorer: 

 
 
There it is: 

 
And from there are we going to load it, because once compiled and deployed, it will be part of our “jar” 
file. If you open most of the standard Servoy plugin (the one having customized icon), you will see that 
the images are there too, inside the sources packages. The big advantage of this is that the image will 
be deployed at the same time and in the same place as your plugin classes, so you classes will always 
be able to find the image. 
 
How do we load the image, then?  
Remember that you cannot create an interface, it is not a class, it is not an object - it is a contract. 
Thus we need a class that implements this interface, and sure enough there is a standard Swing class 
that implements this interface as we learned from the java API: the ImageIcon class.  

14/24 



How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

Now, if you look at the constructors of the ImageIcon class (in the API), you can see that you can give 
it a URL. How do we get the URL of a file that is inside our sources?  
The easy way is to use the Class object of our class. The Class object has a method which will give us a 
URL based on a path String relative to its own location, so the syntax will be: 
URL iconUrl = getClass().getResource(“images/whois.png”); 
 
Where URL is really java.net.URL, and getClass() is a method from the Object class giving you access 
to the class of the object. It can also be written: 
this.getClass().getResource(“images/whois.png”); 
 
The “this” keyword refers to the object itself, and in that case it is not even necessary because there is 
no possible ambiguity. 
 
Now if you copy this code or if you type it directly in the java editor, you will see that Eclipse is 
complaining about the fact that it doesn’t know about URL: 

 
 
There is a little squiggly line under the URL word, and if you hover you mouse over it, you will see that 
“URL cannot be resolved to a type”. Notice also that on the right of the line, just next to the line 
number there is a little icon with an x on red background telling you that something is wrong, this is 
known as the “quick fix” icon, and it is one of the more powerful features of the java editor in Eclipse.  
 
How to resolve the type then? Two ways: either place your cursor just after the URL word and type ctrl 
(or cmd for Mac) + space: 

 
 
You will be able to choose the appropriate class from the list (and note that it will show you the 
javadocs for the selected class to help you finding the appropriate one). 

15/24 



How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

Right now the URL we want is really the java.net.URL, so choose this one on the list, what Eclipse is 
going to do is to add the line “import java.net.URL;” on top of your file, and this time your URL will be 
recognized and you java file will be able to compile into a class file. 
 
You can also click the “quick fix” button; you will get this kind of choice: 

 
 
This time you will get more choice, like adding some import, but also to directly create a new class 
definition file or interface file or changing to some close know class names (useful when you made a 
typo). 
If you chose this option to fix the problem, choose the second “Import ‘URL’ (java.net) 
 
Keep an eye on the “quick fix” button, when it appears, when you click on it (or right-click for even 
more options), it will help you fix quickly a lot of problems, it’s like having a more experienced java 
coder right under your mouse! 
 
So now our line is correct, and we just created an URL from a related path, now if it was found, let’s 
use it to create an ImageIcon, so the rest of the code will be: 
 

if (iconUrl != null) { 
  return new ImageIcon(iconUrl); 
 } else { 
  return null; 

} 
 

And we will have the same problem because our ImageIcon word will not be recognized as a class, so I 
leave you to resolve this problem, since you know (you’re the developer after all) that it really is a 
javax.swing.ImageIcon). 
 
But wait! Why did we check that iconUrl is not null before creating our ImageIcon? 
Well, you should know that java code (as most computer code in fact) is governed by Murphy’s Law: if 
something can go wrong, it WILL go wrong. So each time you type something freely (meaning not 
checked by the compiler - and that’s the case each time you type a String constant), you’re better off 
checking for something that might go wrong: you might have done a typo, you might later want to 
rename your “whois.png” file, your code will change…  
If the code that changed was the name of a class or variable, the compiler will automatically detect 
that there is a problem and would refuse to compile your class, and this is good!  
This will give you the opportunity to do something before the bug hit your users!  

16/24 



How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

But the compiler will not be able to check what’s inside your Strings, so if the day you change the 
name of you image you completely forgotten that you used it in this class, the compiler will not 
complain, but you user sure will, because it will cause a well know and beloved java NPE (short for 
NullPointerException) and your code will not work at all after that!  
It will be like that because if you pass a null URL to the constructor of the ImageIcon class, boom, 
NPE! But if you are a clever java developer and you know the drill, you will have checked for that kind 
of future bug in advance and prepared a counter-offensive: in that case, if for some unknown (yet!) 
reason the URL cannot be created, it will be null, and if the URL is null then you will return null to the 
getImage() method.  
And you are lucky because if you return null to Servoy when he invokes this method, it will simply 
show the “default” icon and not abandon the idea of using your plugin because of a NPE. Better an 
effective plugin with a default icon than no plugin at all, don’t you think? 
You have seen the default icon for a plugin in Servoy, it is this one: 

  
And it’s the one used by all the plugins who returned null to the getImage() method, now you know! 
 
So we just completed our first method, and it should look like that: 

 
Note that while we were at it, we got rid of the “// TODO” marker. If you save your effort, you should 
see that the relevant task disappeared from the “Tasks” view panel. One down, now on to the next! 
 

2. getName() 
This one is very easy, so I won’t spend too much effort explaining it: 
 
public String getName() { 
 return "whois"; 
} 
 
All you need to do, of course, is to return the name of the plugin as it will appear (and be used for 
scripting) in Servoy’s Solution Explorer plugins node. 
 

3. getPreferencePanels() 
The next one is the getPreferencePanels() method, and we will leave it to return null since we don’t 
want to give the end user any kind of preference panel in the smart client interface to fiddle with so we 
have: 
 
public r Panel[] getPreferencePanels() {  Prefe ence
 return null; 

17/24 



How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

} 
 
Note that each time we “implement” a method (even with something as simple as return null – which is 
refusing to implement it really) we get rid of the // TODO marker so that in the end we should be left 
with… nothing to do. 
 

4. getScriptObject() 
This next one is actually the most interesting one. This is the one which will give your scripts all their 
power, and to be quite honest we will not code the core of our plugin here, in the IClientPlugin 
implementing class, but instead we will build a new class based on the IScriptObject interface which is 
what we are supposed to return here. 
 
We are going to create a class that will implement IScriptObject and that will provide the plugin with 
scripting (think JavaScript) methods and behaviours, so by convention we will call it a Provider (you are 
not obliged to do so, but it keep thinks neat by stating what each class does), so the name of our new 
class will be “WhoisPluginProvider”. And instead of creating it the way we already did with the 
“WhoisPlugin” class, let’s have some fun: we will first declare it in context, then tell Eclipse to create it 
for us (that’s just another way to do things, and I like you to know a lot of different ways, because 
depending on what you are doing it might be handier to do it like that). 
 
What am I talking about? Simple, we will use the class before it is even created! Let’s declare the new 
class as a private object inside the current class by typing: 
private WhoisPluginProvider provider; 
 

 
 
Note that the java editor automatically complains about WhoisPluginProvider that can’t be resolved to a 
type.  

18/24 



How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

Now use the “quick fix” button, the first option will be to “create class ‘WhoisPluginProvider’” 

 
 
Double-click on that option, you go straight to the “New Class” dialog, and most of it is already filled! 

 
19/24 



How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

Of course, we know that our WhoisPluginProvider to be truly the object we want to return from our 
getScriptObject method, will need to implement the IScriptObject interface, so let’s add that interface 
to our class by clicking the “Add…” button and… well you know how to do it now don’t you? Type the 
first letters of the interface name and it will magically appear in the “Matching items” list box: 

 
 
Double click on the “IScriptObject – com.servoy.j2db.scripting” line, click OK, and then "Finish" on the 
previous dialog… kazam! You’ve got your class with most of the relevant code already typed for you! 

 
 
OK, there are more TODO tasks to implement now, but don’t despair, the good news is that with this 
huge amount of java files (2 all in all!) and this one image file, our plugin has everything it needs to 
work (except for a few lines of code). 
 
We will create the code of this new WhoisPluginProvider class in the next part of this tutorial, for now 
let’s get back to our WhoisPlugin class where we have left it and finish implementing its methods… 
 

20/24 



How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

21/24 

We can now code our getScriptObject() method, like this: 
 
 public ScriptObject g riptObject() {  I etSc
  if (provider == null) { 
   provider = new WhoisPluginProvider(); 
  } 
  return provider; 
 } 
 
But, you should ask, what is this construct, keeping a reference (a variable - remember how we 
created the class above by declaring it on top of the file?) to a “provider” variable and testing for null 
before returning it, instead of simply returning it? 
 
Two main reasons: 
1/ we might want our script object to retain some state. And if we did this: 
 
 public IScriptObject getScriptObject() { 
  return new WhoisPluginProvider(); 
 } 
 
We would return a new provider object each time the getScriptObject() method is called, so we “keep 
a reference” to our script object by creating a variable (provider) and keeping it safe and warm inside 
the plugin object. You can think of the WhoisPlugin as the guardian of the WhoisPluginProvider object, 
taking care to return always the same instance of its private object. 
 
2/ we initialize our provider object only if it’s needed.  
We could have done this straight away: 
private WhoisPluginProvider provider = new WhoisPluginProvider(); 
 
But if the plugin is not used, the object would have been created (and thus would have been eating 
some resources, CPU/memory) for nothing.  
Instead, the first time the caller (the Servoy client) is trying to get hold of the IScriptObject, the 
WhoisPluginProvider will be created and not before! 
 
This is a technique called “Lazy Loading”, and it is widely adopted to save resources (it eats CPU 
cycles to create an object as well as it eats memory), the “possibility” of an object is there, but it will 
only be fulfilled and the object will only be created if and only it is needed (called).  
I like Lazy Loading! Being lazy myself, I don’t want to spend too much time trying to solve memory 
problems for my clients. You should consider adopting this technique too; your clients’ computers client 
will thank you! 
 

5. initialize() 
We got our getScriptObject() done, the next method is initialize().  
This one is called by Servoy after the client had start-up, passing in parameters an object of type 
IClientPluginAccess (another interface) which is an open door (not totally opened) to the Servoy client 
running the plugin.  



How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

22/24 

We will look at that interface in more details and examine what we can do with it in another (larger) 
tutorial. To simplify here, just note that the only thing it would help us with right now is to know which 
type of client is running your plugin. But since our script object will be working in any client (it won’t 
have an interface), we don’t need that information, so our implementation of this method will be: 
 

public void initialize(IClientPluginAccess arg0) throws PluginException { 
  // ignore 
 } 
 
Yeah, just ignore it, it won’t hurt! 
 

6. getProperties() 
Next method: getProperties() should return a Properties object (we talked about it before, see above). 
Basically the only required property key/value pair we need to fill for now is the DISPLAY_NAME 
property, so we implement it like this: 
 

public Properties getProperties() { 
  Properties props = new Properties(); 
  props.put(DISPLAY_NAME, getName()); 
  return props; 
 } 
 
Now look carefully at this code and you will see that this is me being clever ;-) 
 
First we create a Properties object (no need for lazy loading here, we don’t need to keep a reference to 
the object so it will be garbage collected when not used by the caller (Servoy) anyway. 
Then we fill the props variable we just created with the key that is provided by the IClientPlugin 
interface (note that by convention constants – static final objects in java – are uppercase). 
Now the clever (!) thing to note is that instead of filling the props DISPLAY_NAME with a string that will 
be “whois” we call the getName() method that we implemented already to return the “whois” String 
(the name of our plugin). 
 
Why is it better? 3 letters: DRY. Don’t Repeat Yourself. This is a very simple but effective concept that 
every developer should try to respect as much as he could, if you already did something somewhere, 
try to reuse it where it is instead of doing it again somewhere, don’t even think of copy/paste. This was 
much discussed a few years ago with the rise of the Ruby on Rails framework, but they didn’t invent 
the concept, it’s as old as good computer engineering. 
When the time will come where you’ll want to change the name of your plugin, you will only have to do 
it in one place, and one place only, and it will be changed everywhere it is called. 
 
Now I could also have created a constant like that at the top of the WhoisPlugin class: 
private static final String PLUGIN_NAME = “whois”; 
 
And then I could have used this constant in the getName() method (and the getProperties method), 
except that I didn’t feel that I needed to create another variable for that.  



How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

23/24 

It really is a question of taste, constants are good, especially to avoid this “magic numbers” scattered 
inside your sources (like  
switch (value) { 
 case 11: 

// do something 
break; 

case -2: 
// do another thing 
break; 

etc… 
} 
These 11 and -2 values might be obvious when you first wrote your code but tend to be totally obscure 
a few months later, especially if it’s someone else that inherits the maintenance of it, but if you used 
constants, their names will help the poor guy coming after you – if you don’t care, remember that the 
poor guy could be yourself!. 
 
Anyway, you shouldn’t abuse of the good things, but always think of the implications in the future of 
what you are doing today! That’s what my grandma always said ☺ 
 

7. load() 
So we got our getProperties() cleverly done, next one is the load() method, supposedly called “when  
the application is starting and before it is started”. Not sure exactly when that is in the lifecycle of the 
Servoy application(s), anyway we have nothing to initialize especially here, so we can implement it like 
that: 
 

public void load() throws PluginException { 
  // ignore 
 } 
 
Told you Java was easy! 

8. unload() 
This next method is useful to get rid of references to object you might have created, and indeed we 
created an object, the “provider” variable, holding an object of type WhoisPluginProvider, so let’s 
implement the unload() method to get rid of it: 
 

public void unloa throws PluginException { d() 
  provider = null; 
 } 
 
That’s it! Now the garbage collector will be able to dispose of the object. We are environment friendly! 
 

9. propertyChange() 
Finally, yes finally! The propertyChange() event method, that we inherited from the IClientPlugin 
interface too, it is an event method, meaning that it will be called when a certain event occurs. In this 
case a PropertyChangedEvent will be passed when a “bound” property changes value. I will not explain 
too much of that, just understand that it is related to the PreferencePanels that we could have create 
for the “Application preferences” dialog in the smart client. Since we didn’t create any panel, we don’t 
need to deal with PropertyChangedEvent event, so our implementation of this one is: 
 



How to build a plugin for Servoy - A step by step tutorial brought to you by Servoy Stuff 

24/24 

public void propertyChange(PropertyChangeEvent evt) { 
  // ignore 
 }  
 
That’s it, we got our class completed, the IClientPlugin interface is completely implemented, and when 
we save our java file, it will compile and all the tasks related to the WhoisPlugin class will disappear 
forever from our “Tasks” view. 
 
To control that you did it everything right, you can download the WhoisPlugin.java file here: 
http://www.servoy-stuff.net/tutorials/utils/t01/WhoisPlugin.java  
 
 
Hope you enjoyed the ride, the next part will be about implementing the IScriptObject interface 
impersonated by our WhoisPluginProvider class, creating some meaningful JavaScript method to query 
a whois server, compile, deploy and use in Servoy! 
 
 
 
Patrick Talbot 
Servoy Stuff 
2009-06-09 

http://www.servoy-stuff.net/tutorials/utils/t01/WhoisPlugin.java

	F. The public API is your friend
	G. The IClientPlugin interface
	H. Implementing the IClientPlugin interface
	I. One method at the time

