
How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff 

1/11 

 
 
How to build a bean for Servoy  

– A step by step tutorial brought to you by Servoy Stuff 
 
PART 1 

A. Introduction 
 
This tutorial is going to look into details on how to build beans for Servoy.  
We are not going to see in particular how to create a Swing bean (there are lots of available books and 
resources which will give you this information - you can use any kind of beans because as you will see 
you can use “normal” java beans coming from any source, being standard Swing beans, or third parties 
open source or commercial components), no, we are going to build what we will call a “Servoy-aware” 
bean, meaning a bean adapted for the Servoy platform to facilitate its use in Servoy and allow it to 
communicate back with Servoy clients. 
 
This first part is going to look at how to use regular beans in the Servoy IDE, how to script them and 
what you can do with them, which is quite a lot already. But we will see some of the shortcomings of 
using beans not adapted for Servoy and the amount of code necessary each time you want one of 
these “regular” beans to be integrated into the Servoy environment. 
In the next parts we will take one bean in particular and start to extend it to make it “Servoy-aware”, 
we will also see how we can add scripting, call-backs, and so on, and then we will try to make it fully 
web compatible by creating a wicket version of the bean, usable in the web client so that our final bean 
will be usable on any Servoy clients. 
 
The bean will be Open Source of course and you will find along with this tutorial everything you need 
to build it yourself: sources, resources, eclipse project to use in the Servoy IDE, and a sample solution 
to demonstrate its use. 
 
That’s a big agenda here, and although I have a rough plan in my head right now, I still have no idea 
what we are going to end up with, really. But I’m optimistic, so trust me, whatever it is, we will see 
along the road a lot of useful techniques and explanations that will help you build your own. 
 
So let’s start simple by getting accustomed to “regular” beans inside the Servoy platform. 
 
 

B. The Sample/Test project 
 
First, in Servoy 4.1.x let’s create a new Servoy solution; we will name it “beans_tests”.  
The name reflects well the fact that this is the solution that we will use to test our “regular” beans as 
well as our own “Servoy-aware” bean, it will allow us to switch from “regular” to “Servoy-aware” beans 
and compare their behaviours and see the result of our coding as we go along, and in the end it will 
allow us to test our bean in a real context. 
 
Inside our “beans_tests” let’s add a form, and call it “sliders”, since we are going to put test some 
sliders on it. Let’s use the “udm” database “orders” table, since it’s a standard sample db that you 



How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff 

should already have with your Servoy installation. Of course, you can base it in any other database and 
table of course but in that case you will probably have to tweak some of the methods later.  
 
Let’s choose a few fields to place on our form so that it is not too empty, I have chosen “order_id”, 
“company_id” and “orderdate” (I think there is a reason why these fields seems to be duplicated, if you 
really need to know I suppose you will have to search in the CRM sample solution). 
 
So we now have this kind of form: 

 
 
Looking like this in the smart client: 

 
 
Not very exciting, is it? 
 
We are going to add a slider bean to use as navigation, just like the Servoy default navigator does. 
So click on the “Place bean…” button or choose “Place Bean…” from the elements menu, then in the 
list of available beans, choose the “JSlider”: 

2/11 



How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff 

 
 
You can see that there are a lot of these JSomething beans in there. These are the standard swing 
beans, if you take a look at your /beans folder, you will find a “swingbeans.jar”, it’s size is only 2kb and 
if you open it, you will see that there is only a MANIFEST.MF which only declares the javax.swing 
related component as java beans.  
There is no code. This is because the javax.swing components are already part of you java installation. 
 
Now none of these swing beans are Servoy-aware, but they are certainly usable as such, providing you 
script them as we will now with our JSlider. 
 
The JSlider has been placed on our form with a name of “bean_” + an arbitrary number at an arbitrary 
place with a size of 80x80: 

 
 

3/11 



How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff 

The size of 80x80 is always the same whatever the bean you are selecting. And this is actually a bug of 
Servoy (I submitted a case #211901 a few weeks ago about this, never head of it since): ignoring the 
“preferredSize” hints provided by every bean, in that case it should be 200x25 as you can see form the 
properties: 
 

 

C. The JSlider properties 
 
The “Properties” part at the bottom contains regular Servoy properties. The “Beans” part contains the 
specific properties exposed by the bean, so let’s review them: 
 

4/11 



How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff 

5/11 

- aligmentX / alignmentY: this is the standard way of setting the alignment using a float value 
between 0 and 1, the meaning is 0 = left/top – 0.5 = center/middle – 1 = right/bottom – you 
can use any values in between to better tweak the alignment 

- autoscrolls: this boolean is just a hint, there is no such thing as an automatic scrollable 
component in Swing, if you need a component to scroll (showing scrollbars) you will have to 
embed it into a JScrollPane 

- background: the color to use as background if the bean is set to “opaque” 
- border: can be any of the standard borders used by Servoy (Etched, Line, Bevel, etc.) 
- debugGraphicsOptions: an integer that can be used when debugging graphic operation in 

java when creating a component (values comes from JComponent : BUFFERED_OPTION, 
FLASH_OPTION, LOG_OPTION, NONE_OPTION) default to 0/NONE_OPTION – no use in Servoy 
anyway – see java Swing API for more info 

- doubleBuffered: boolean to set whether the bean should use a buffer to paint. The technique 
known as doubleBuffering is especially useful when doing animations, because you don’t paint 
directly on the surface of the screen but into an offline buffer, and then quickly copy the result 
into the paint surface. You will not see any notable difference for a bean since it also depends 
on the container (frame window) to use a buffer or not, if the window does use a buffer then 
the components will automatically use it as well. 

- extent: this is the total amount of values the slider represents; leaving it to 0 will ask the slider 
to deduce it from the values of maximum – minimum. 

- focusable: boolean, if true, the component will be part of the focus sequence, if not you will 
not be able to access it using the focus keys (tab / shit-tab) 

- focusCycleRoot / focusTraversalPolicyProvider: used if a component is a composite of 
different component and is a focus root and provides a policy to traverse its inner components 
(no use in the case of a JSlider) – see the swing API to learn more about the Focus system 

- font: set the font of the labels if any 
- foreground: the color of the labels if any 
- inheritsPopupMenu: if the parent container has set a PopupMenu, this boolean will tell if the 

Slider will also react to it 
- inverted: will invert the direction of the slider know; this will be used when orientation is 

vertical to allow increasing the value when moving down from top to bottom, instead of the 
standard behaviour which is up from bottom to top. 

- majorTickSpacing: allow to add big tick marks for every x values 
- maximum: the maximum value represented by the slider 
- maximumSize: the maximum size of the bean on a form 
- minimum: the minimum value represented by the slider 
- minimumSize: the minimum size of the bean on a form 
- minorTickSpacing: allow to add little tick marks for every x values 
- opaque: set the background to be painted with the background value or be transparent 
- orientation: 0 is horizontal – 1 is vertical 
- paintLabels: will add a label with the related value for every major ticks 
- paintTicks: will paint the major and minor ticks if the related spacing is > 0 
- paintTrack: will paint the line of the slider or not 
- preferredSize: a hint for bean IDE to set the initial value (this is the optimal size of the bean 

when it has all its default values) see above about Servoy not using this hint 
- requestFocusEnabled: a hint to the container Focus System, that this bean will respond to 

focus event – see the javadocs for JComponent for more info on this 
- snapToTicks: boolean, if true, will make the slider jump to the closer tick if set to an in-

between value 
- value: int, the current value represented by the slider 



How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff 

- valueIsAdjusting: boolean indicating that the slider knob is currently dragged, so the value is 
not to be taken into account, not to be used in the properties since it is a “dynamic” which will 
be set by the component 

- verifyInputWhenFocusTarget: can be used internally by components to adjust validation, 
not used in the case of a JSlider – see JComponent javadocs for more info on this 

 
Now that we know what all these properties mean, let’s tweak our slider.  
For example, if we want it to be just like the regular Servoy default Navigator, we will adjust its values 
like that: 

- maximum = 8 
- maximum = 1 
- inverted = true 
- orientation = 1 
- value = 1 
- size = 25,80 
- name = slider 

 
Note that in the udm “orders” table that we based our form on, there is 8 records, so that’s why I set 
the maximum to 8, you might want to set it to another value if your form is based on another table or 
if this table contains another number of records 
 
Starting to look familiar, isn’t it? 

 
 
Now let’s add a few things to make it look even better: 

- majorTickSpacing = 2 
- minorTickSpacing = 1 
- paintTicks = true 
- snapToTicks = true 
- size = 40,80 

 

6/11 



How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff 

Now, it should look like that: 

 
 
As you can see, depending on the fact that ticks are visible or not, the shape of the slider’s knob 
changes to get a pointy head. You can also see the effects of setting major and minor ticks, as well as 
the effect of the snapToTicks boolean when you move the slider with the mouse: it will refuse to stay 
in-between two ticks, and will jump to the closest mark (with a slight preference to the “next” value, -
this is the effect of rounding a float/double value to an int in the inner implementation of the slider). 
 

D. Scripting the JSlider in Servoy 
This is all well and good, but right now our slider is not very useful, because whatever value you set it 
too, it does not drive the foundset, nor take its value from the selected record. 
 
To achieve that, we will need to add some scripting to our form. First let’s attach it to the size of our 
foundset, this way we don’t need to guess in advance what values to put for maximum and tick 
spacing. 
 
Add a form method to the “onShow” event; let’s call it FORM_onShow, with this code: 
function FORM_onShow() 
{ 
 ments.slider.minimum = 1; ele
 var max = foundset.getSize(); 
 elements.slider.maximum = max; 
 we want a maximum of 10 major ticks: // 
 var tickSpacing = Math.round(max/10); 
 elements.slider.majorTickSpacing = tickSpacing; 
 // and no minor ticks: 
 elements.slider.minorTickSpacing = 0; 
} 
 
As you can see, you can set/get the values of any properties of a bean exactly the same way you 
would do with a regular Servoy field element. 
 
Now let’s hook the value of the bean to the selected record. 
 
Add a form method to the “onRecordSelection” event, let’s call it REC_selectRecord, with this code: 
function REC_selectRecord() 
{ 
 elements.slider.setValue(controller.getSelectedIndex()); 
} 

7/11 



How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff 

Now when we navigate our form with the standard “navigator” or use one of the standard form menu 
(Previous Record or Next Record), our slider’s knob is following. 
 
That’s great, we’re getting somewhere! 
One cool thing would be to add a field to show the current value, so let’s first create a form variable to 
hold it and let’s call it “index”: 
var index = 0; 
 
and change our REC_selectRecord method slightly to also update its value, like this: 
function REC_selectRecord() 
{ 
 index = controller.getSelectedIndex() 
 elements.slider.setValue(index); 
} 
 
Let’s place a field bound to this form’s variable and place it under our slider, our form should now look 
like this: 

  
 
Cool! But even if the values of the bean and field are properly updated when we change records, the 
inverse is still not true, we can move our slider’s knob or change the value of our field, the selected 
record doesn’t change: 

  
 
To tackle this synchronization problem, we need to find a way to change the selected record when the 
value of the slider changes or when the field’s value changes. 
 
For the field, it’s easy; we can add a simple method to the field’s onDataChange event, like this one: 

8/11 



How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff 

9/11 

function ACTION_indexChange() 
{ 
 controller.setSelectedIndex(index); 
} 
 
You can see that when you type another value inside the field and hit enter or tab, or exit the field, the 
selected record changes, updating the standard navigator, as well as our slider (this is the effect of our 
REC_selectRecord hooked onto the onRecordSelection form event). 
 
But still, our slider, if it follows the record selection, doesn’t “drive” it.  
This is because to be able to react to changes of the slider’s value, we need to add a listener to it. 
 
Listeners are universally used in any programs that need to watch for event coming from a user’s 
interaction, they are what’s powering any event-driven program, from Servoy to your web browser to 
your operating system. Any modern program is actually build from a “main event” loop (a concept 
coming from the Apple, coming from Xerox, coming from clever people who thought a program’s first 
function is to interact with a user, and to do this, he must listens to its “master”) 
 
Now there is a huge variety of listeners in Java, if you want to have a feel of it, you can browse the 
javadocs for java.util.EventListener and see all the “All Known Subinterfaces” and “All Known 
Implementing Classes”, that’s only the official java listeners enclosed in your JRE. 
 
Listeners are powerful, there are lots of them around (each of the “onXXX” method of Servoy is 
actually attached to a listener), they are handy and are very often the way to build powerful and 
reusable code, but if you don’t use them properly, they can eat your resources (CPU/RAM) quite fast. 
 
The key to use listeners is to attach them once, and once only, and to get rid of them properly when 
not used anymore. To be able to do this, components usually have and addXXXXListener() and a 
removeXXXXListener() where XXXX is the relevant listener. 
 
So the best thing to do before adding a listener, is actually to remove it first!  
If the listener has not already been added, the removeXXXXListener() method will do nothing anyway, 
so it’s a safe method to use. But to be sure that we will only remove our own listener (for regular 
Servoy field components listeners are already in place), we must keep a reference to our listener, so 
first we will need a variable to hold that reference, like that: 
 
var listener = {}; 
 
Note that I set this variable to be an object by using the JavaScript construct {} – If you don’t do that 
and either simply declare the variable like this: 
var listener; 
 
or set its value to null like this: 
var listener = null; 
 
Servoy will complain later when you try to create a listener the variable is actually a String! 
 
Now, we’ve seen that there are lots of listeners around, but what kind of listeners do we need to 
implement to react to a change of the value of the slider. A quick look to the JSlider javadocs we can 
see that it holds a ChangeListener, and have an addChangeListener() and a removeChangeListener 
method, looks like the one we need, and if we look at the javadocs of the ChangeListener interface 
(javax.swing.event.ChangeListener is the fully qualified name of this interface), we can see that there 



How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff 

10/11 

is only one method “stateChanged” method defined which passes a ChangeEvent object, which 
(according to the javadocs of this Event will simply give us a pointer to the source of the change event) 
 
Now we have a listener variable, and we know that our listener needs to be an object that implements 
the interface “ChangeListener”. - You remember that an interface is only a contract that any object can 
implement, but you cannot instantiate an interface in Java; so how will you implement it from inside 
Servoy’s JavaScript? 
 
Well, thanks to Rhino, there is a very simple “JavaScript-like” way to implement an interface, you use 
the “new” keyword on an interface and you pass it a JavaScript object that holds the 
properties/methods the interface contract is waiting for! 
 
Let’s add this code to FORM_onShow method: 
 
if (arguments[0]) { 

listener = new 
Packages.javax.swing.event.ChangeListener({stateChanged:CALLBACK_changedValue}); 
 elements.slider.removeChangeListener(listener); 
 elements.slider.addChangeListener(listener); 
} 
 
The test “if (arguments[0])” simply checks if it is the first time the form is shown, the event onShow is 
always called by Servoy with a boolean arguments, it will be true the first time the method is called, 
false otherwise, this is equivalent to "onLoad" but "onShow" is called AFTER the foundset was loaded. 
 
We first initialize the listener by using the special Rhino construct new + the use of Packages.+ fully 
qualified name of the object we want to create, and since it is an interface, we pass it and object {} 
with the stateChanged method pointing to the name of a JavaScript method 
“CALLBACK_changedValue” that we will create next. 
 
Then we remove the listener using the removeChangeListener (always safe practice, especially if you 
are in developer and switch from developer to client all the time). Then we add it using the 
addChangeListener method of our bean. 
 
Now we need to create our “stateChanged” method, in Servoy we called it CALLBACK_changedValue, 
let’s code it like this: 
function CALLBACK_changedValue() 
{ 
 var evt = arguments[0]; 
 if (evt) { 
  if (evt.getSource() == elements.slider) { 
   index = elements.slider.getValue(); 
   ACTION_indexChange(); 
  } 
 } 
} 
 
We get passed an event which will be a ChangeEvent, let’s check it’s not null, and let’s also check that 
our source is the bean (we might use this same method later for other sources and do different 
things). Now if we have an event and the source is indeed our slider bean, then it means that its value 
has changed, all we need to do is check it, set our index to it (it will update our text field) and call our 
ACTION_indexChange() method which if you recall, is updating the selected record. 
 



How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff 

11/11 

Why not calling controller.setSelectedRecord(index) directly in here? 
Well this would mean a repetition of the same code, and would violate the DRY principle (Don’t Repeat 
Yourself). If you already have a piece of code implementing some functionality, don’t reproduce its 
implementation somewhere, call it instead. In short: copy/paste is hell. If you want to live long as a 
programmer, don’t even think of using it, one day or another you would deeply regret it/ 
 
So that’s our listener and callback method all done, let’s just wrap the whole thing by adding a last 
piece of code to make sure we properly dispose of our listener, by adding a method to our form 
“onUnload” like this: 
function FORM_onUnLoad() 
{ 
 elements.slider.removeChangeListener(listener); 
  listener = null; 
} 
 
We remove our listener for good (otherwise it might never be disposed by the Java garbage collector) 
from the bean listeners inner list, and set it to null. 
 
That’s it! Now to wrap it, we can remove the standard “default” navigator by setting its property to  
-none- and our form is now functional with a custom slider navigator… 
 
For the lazy ones and those who are never quite sure they did everything right, the complete sample 
solution with all the code we have seen here is available at the url: 
http://www.servoy-stuff.net/tutorials/utils/t02/beans_tests.servoy 
(Rename to “beans_tests.servoy” if your browser insists that this is a zip file – and import into Servoy) 
 
For those still on 3.5.x (why in hell?), I have made a similar solution, although slightly adapted (for lack 
of form variables and “onUnload” form event – boy how quirky this version is compared to 4.1!): 
http://www.servoy-stuff.net/tutorials/utils/t02/sliders35.servoy  
 
You can test it yourself and even though the JSlider bean is not web compatible, it is working well in 
the smart client.  
 
Or so it seems… 
 
In the next parts we will take a look at some of the problems and limitations this way of using beans  
has and see how we can address these shortcomings by wrapping a component into a Servoy Aware 
bean, this time using Servoy as a Java IDE… 
 
In the meantime have fun with standard swing beans and java listeners! 
 
 
Patrick Talbot 
Servoy Stuff 
2009-06-29 

http://www.servoy-stuff.net/tutorials/utils/t02/beans_tests.servoy
http://www.servoy-stuff.net/tutorials/utils/t02/sliders35.servoy

	A. Introduction
	B. The Sample/Test project
	C. The JSlider properties
	D. Scripting the JSlider in Servoy

