How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff

How to build a bean for Servoy
— A step by step tutorial brought to you by Servoy Stuff

PART 2

E. What is wrong with regular Java Beans?

In the first part of this tutorial, we showed how to use a regular JSlider bean, and how to script it in
Servoy to make it interact with the Servoy environment.

Although this method is working fine, and can definitely be used when you want to integrate a bean
quickly in Servoy, it still has its drawbacks. |1 don’'t know how many of you guessed what they were
already but the most obvious is the amount of scripting you need to add to your form to have a basic
integration and make the regular bean aware of its environment.

No less than 5 methods and 2 variables were needed on the form to make the slider bean function
properly.

And yet, it is not finished! | don't know if you tried it, but if you go into find mode, or do a search and
thus change the number of records in the foundset, the slider bean will not be aware of that, and it will
still display and try to operate on the total foundset.

To workaround that, we could extract the portion of code that was in the FORM_onShow() method and
create a new function, like this:

function ACTION_setSliderValues()

{
var max = foundset.getSize();
.slider.maximum = max;
// we want a maximum of 10 major ticks:
var tickSpacing = Math.round(max/10);
.slider.majorTickSpacing = tickSpacing;
// and no minor ticks:
-slider.minorTickSpacing = 0O;
}

Then call it from the FORM_onShow() (instead of having the code duplicated — remember DRY?), and
also call it from the REC_selectRecord() function like that:

function REC_selectRecord()

{
index = controller._.getSelectedlndex()
ACTION_setSliderValues();
.slider.setValue(index);
}

Now even if the foundset total number of record changes, the slider will follow.

1/21

How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff

But when you are in Find mode, it still believes that it can operate on a full number of records, which
still feels a bit odd, so we would need to hook a method to the onFindCmd event of the form, like that
for example:

function ACTION_sliderDisable()
{

.slider.enabled = false;
controller.find(Q);

And also another one to the onSearchCmd and onShowAlIRecordsCmd form events, like this:
function ACTION_sliderEnable()

if (foundset.isInFind(Q)) {
controller.search();
}

.slider.enabled = true;

Now our bean is disabled when we are in find mode, and enabled again when we search and updated
with the proper number of records.

That's a lot of scripting! We now have 8 methods in our simple form just to handle the bean/ And if
you need to integrate in many forms, you will have to put this kind of code (or an adaptation of it to
make it work in a more generic way, in a module for example).

All this because our bean has no idea of the environment it is put in, in a word it is not Servoy-Aware!

This is how our goal now will be to build a JSlider based component, which will be Servoy-Aware, to
help reducing the amount of scripting needed to integrate it in Servoy, thus making it more reusable.

So let’s launch our Servoy (any Eclipse distribution will do just fine too of course) in “Java” mode,
switch to the “Java” perspective, and create a new Java project...

2121

How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff

F. The ServoySlider bean project

So we create a java project, name it “ServoySlider”:

Mew Java Project

Create a Java project

Create a Java project in the workspace or in an external location.,

Project name: | Servoyslider|

Conkents

{f} Create new projeck in workspace

D reate project From existing source

JRE

(%) Use default JRE (Currently ‘jre6")

Configure default. ..
{:} Il=e a project specific JRE:

D Use an execution environment JRE:

Project layout

) Use project folder as root For sources and class files
(%) Create separate folders For sources and class files

Configure default, ..

Wiorking sets

Add project to working sets

Wharking sets: | plugins

V| [Select...

[Next%—l[Finish || cancel

3/21

How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff

Of course, we need to add the “Servoy” User Library:

E‘ v E Mew Java Project

Java Settings

Define the Java build setkings,

| [Source " I=F Projects | =i Libraries | % Order and Expu:urt|

JARs and class Falders on the build path:

=i IRE System Library [ireg]

& Add Library

Add Library

Select the library bype to add. é}]

JRE Sﬁstem Librari

@ « Back. Firish

Add J4Rs. ..

add External JaRs. ..

Add Library. ..

[
[
| add variable...
[
[

add Class Faolder. ..

Edit. ..

Remove

Migrate 14F. File, ..

@ wt> |

Finish] [Cancel

4/21

How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff

Add Library =13

User Library
Select a library to add ko the classpath a |

Selected User Library:

[!&JR zer Libraries. ..

[Ficish l [Cancel
M

The “Servoy” User Library should contain these jars:

Mew Jawva Project

Java Settings

Define the Java build setkings.

[Source | =5 Projects | =i Libraries |‘-'}q} Order and Export

JARs and class Folders on the build path:

B, JRE Swstem Library [125E-1.5]
=)
Access rules: Mo rules defined
é‘% Mative library location: (None)
f@ jzdb.jar - C:Program Files) 3ervoy' application_servertlib
:é, j2dbdew.jar - C:\Program Files3ervoyiapplication_servertlib
El js.jar - Ci\Program Files)Servoyhapplication_serverilib
E‘ wicket, jar - Ci\Program Files\Servovlapplication_server!ib
E‘ wicket-extentions. jar - C:\Program Files)Servoyapplication_server!lib
f@ wicket-calendar . jar - C:\Program Files\Servoyviapplication_serverilib

L R e R

El joda-time, jar - CiiProgram FilestServoylapplication_serverilib

| add1aes. .

[Add External J8Rs. ..

[add Variable, .,

[add Library, .,

[add Class Folder. .

[Edi...

[Remove

|

Haish] [Cancel

5/21

How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff

So now, we have a nice empty Java project that shows in the Package Explorer like that:
[& Package Explorer &3 ?g Hierarchy | T Mavigator =08

=& v

+-B8, JRE Swskem Library [jred)
+-BEl Servoy

Now, how are we going to take an innocent JSlider and make it “aware” of the Servoy environment?

A quick search in the Servoy public API for 4.1.x (and even in the 3.5.x API) doesn’t give us too much
hope. The only way right now, if we believe the APl seems to build a plugin to get a hold of an
IClientPluginAccess (the Servoy running client), which by way of its getFormManager() method
could give us access to an IFormManager object, which in turn, by way of its getCurrentForm()
could give us access to an IForm which in turn could give us access to an IFoundSet via its
getFoundSet() method, except that this method is commented with the following disclaimer:
CURRENTLY FOR INTERNAL USE ONLY, DO NOT CALL.

Now that's a bummer!

The catch is that a few weeks ago this disclaimer was not even here! And there’'s even more: there is
another interesting interface that we will use later, the 1ServoyAwareBean interface, this one was

there and | used it with Servoy 4.1.2 and 4.1.3 without any problems, but somehow, mysteriously, it
just disappeared, and is now only available in the 4.2.x version of the API!

If you are like me and you think that this 4.2 version (aka Tano) is a long way from being released,
then you want to try it in 4.1 anyway, | can guarantee you that it was there, and it works, as of 4.1.2+

anyway!

So let's get a look in the 4.2.x version of the API, and sure enough, if I look at the IForm
getFoundSet(), the disclaimer is not here, and | can access the foundset with the related interface
IFoundSet and in this interface, there is lots of very interesting methods, like getSize(),
isinFindMode(),getSelectedindex(), and even a way to add a listener
addFoundSetEventListener(IFoundSetEventListener 1) which will notify our component each time the
foundset changes, with a FoundSetEvent event.

There’s everything we need here!

All we need to decide is whether we are going to get a hold of the foundset via the
IClientPluginAcess route or via the 1ServoyAwareBean route.

The only difference here is how we want to use the bean in the end: if we want to use it as a regular
bean, putting it on a form set a few properties and voila! Or if we want it to appear in the plugins node
of the Servoy Solution Explorer, meaning that we will have to instantiate the bean via scripting.

I don’t know about you, but I much prefer the second solution, so let's go ahead and implement our
IServoyAwareBean.

6/21

How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff

G.The IServoyAwareBean interface

First let's have a look at the javadocs to see what we need to implement:

com.servoy.j2db datani
Interface IServoyAwareBean

All Superinterfaces:
Display

public interface IServoyAwareBean
extends IDisplay

Interface to be used by beans to make them aware of Servoy,

Method Summary

il jnitialize (IClientPluginkccess access)

Tritializes the bean.

veid| setSelectedRecord (IRecord selectedRecord)

Applies the record {currently selected) to the bean.

MMethods inherited from interface com.servoyj2dh.dataprocessing. [Display
isEnabled, isBeadOnly, setWalidationEnabled, stopUIEditing

Method Detail
I

There’s not much here apparently, just 2 methods:
- Initialize(), which will be passed an IClientPluginAccess object (our Servoy client), which we can
use to get a hold of the foundset (see above)
- setSelectedRecord() which will pass an IRecord and is the java equivalent to the
onRecordSelection event on a Servoy form

7121

How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff

But wait, the interface also extends the IDisplay interface, so we need to look at this one as well:

com.servoy.j2dh dataprocessing

Interface IDisplay

All Enown Subinterfaces:

IServovbwareBean

public interface IDisplay

Interface for components that have some addiional finctionality.
It 1s meant for components that are linked to dataProwiders.

Method Summary

beelean | j sEnabled ||

boolean

boolean

woid

Enabled displays are displays the user can interact with and ate an active part of the TTT

isBReadinly ()
Eead-only displays are displays that do not let the user alter thew displayed value.

zetVWalidationEnabled (boolean mode)

Displays usually have special behawior in find mode - most of the times disabling vahidation & becoming
editable.
This 15 called when entenng/esating find mode.

stopUIEditing (boolean looseFocus)
The method gets called when Servoy wants the contents of an display to be commuitted to it's model and
malce sure it 15 not editing content (can be record change, active form change, save, ...

Seems pretty straight-forward, and at least we have more then one line of comment this time:

isEnabled() will need to return true if the component is enabled

IsReadOni) will return true id the user can’'t modify the value

setValidationEnabled() will be called by Servoy to ask our component to go into “find” mode
stopUIEditing() will be called by Servoy each time it needs to read the value, we will use that
later, since our first implementation of the slider will not be used to modify record values, but to
navigate a foundset, there will be another version that will be used as an input component...

OK, we know what interface to implement, and we know that our component is basically a wrapper
around a JSlider, so the easiest way to do that is to build a subclass of JSlider which will implement
IServoyAwareBean, meaning our class signature will be:

public class ServoySlider extends JSlider implements IServoyAwareBean

Let's create it!

8/21

How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff

H.The ServoySlider class

First create a package to hold our class:

New Java Package

Java Package
Create a Java package. £

Creates folders corresponding bo packages,

Source Folder; |Serv0y5lider,l'src | [Browse, ..]
Marne: | net, skuff servoy, beans. slider| |
@ | Fpsh || cancel

&0

Then create our class:

Hew Java Class

Java Class
Create a new Java class, @

Saurce Falder: | ServaySlidersrc | [Browse, ..]
Fackage: | net, stuff, servoy, beans, slider |
[JEnclosing tvpe: | |
Marne: | ServoySlider |
Modifiers: {*) public ") default

[Jabstract []final
Superclass: | javas. swing. 15lider | [Browse, .]
Interfaces: €9 com.servoy. j2db, dataui. [ServoyiwareBean add...

Remove

Which method stubs would you like to create?
[]public static waid main(String[] args)
[]constructors from superclass
Inherited abstract methods
Do wou wank bo add comments as configured in the properties of the current project?
Generakte comments

(7 [Figish] [Cancel

b

9/21

How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff

We don't need to override all the constructors from the JSlider superclass, since a bean will always be
instantiated by Servoy using the constructors with no parameters.

We will override the empty constructor later.

Eclipse shows a warning, because the JSlider being a JComponent is Serializable, which means that we
also need to allow serialization of our subclass. An easy way to deal with that is to use the quick fix of
Eolpse:.

1 public class f Ja| extends J3lider implements I3ervoyiwareBean {

2 =k add default serial version 1D Adds a default serial wersion ID ko the selected bype.

3 A% (non-J ; % ;

4 " i Ll genn.aral.:ed e 5"?'” N IJse this option to add a user-defined 1D in combination|
Bsee © I Rename in file (Ctrl+2, R direct access) with custom serialization code if the bype did undergo f-

= i @ Change maodifiers bo final where possible skructural changes since its first release,

& Boverride @ add @SuppressWarnings 'serial to 'ServaySlider

7 public vo

] £

I will not go into the details of what's best between using a default private final static long
serialVersionUID (1L) or to generate a serial version ID, just know that it is a deep field that is quite
controversial in Java circles, you can google about it, know that here all we need to set is a simple
default to allow serialization of our bean, so choose “Add default serial version ID” from the quick fix
menu and save our class, the warning will disappear.

So, first let’s get rid of the most obvious methods:

First the initialize is not what we are going to use, and we don’t need access to the client for now:
@Ooverride

public void initialize(IClientPluginAccess app) {
// ignore for now
}

Our bean is not readOnly (it will allow users to change some value) so we return false here:
@Override
public boolean isReadOnly() {
return false;
}

Here we store the value of the validationEnabled flag which will tell us if we are in find mode, we also
set the slider to an enable state according to the mode:
@Ooverride
public void setValidationEnabled(boolean paramBoolean) {
this.validationEnabled = paramBoolean;
setEnabled(paramBoolean);

}

And finally we return true to calls by Servoy to stopUIEditing, we don’t need to implement anything

here, just return that we are done (see the comment of this method in the API for more info):
@Ooverride

public boolean stopUlEditing(boolean paramBoolean) {
return true;
}

We already talked about the @Override annotation which basically tells the compiler that we know that
we are overriding a method from a superclass or implementing an interface. This is Java 1.5+ but this

10/21

How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff

is fine since our bean will only be compatible with Servoy 4.1.x which has a requirement of Java 1.5
anyway.

Since we will be receiving a few values in parameters from the different methods here, we need to add
variables to hold them, so add:

protected IFoundSet currentFoundset;
protected boolean validationEnabled;

Why store a reference to an IFoundSet and not to an IRecord?

Well, right now in this version of the bean, we only want to create a navigation slider, not slider that
will update values in records, in another tutorial, we will probably change that... This is called
refactoring BTW, and we will see how good Eclipse is at that ;-)

We set these properties as protected because we don’'t want to have to create getters and setters for
them but we want our component to allow subclasses access to these variables. If needed, we will add
them later...

The real interesting method is the setSelectedRecord() and we are going to use it to update our
“currentFoundset” property as well as updating the JSlider properties, so let’s type the following:

public void setSelectedRecord(IRecord record) {
it (record !'= null) {
this.currentFoundset = record.getParentFoundSet();
updateSlider();

}

Easy enough, we get a hold of the parentFoundset of our record (if it's not null), but what about the
updateSlider() method, we haven't created it yet so Eclipse is complaining that there is an error!
This is actually a trick to ask Eclipse to work for us: we'll use the quick fix to “fix that error”, since

Eclipse is so much quicker at creating a method stub than we are:
o Birrerride

4 public void setelectedBecord(IRecord record] 1
5 this.currentFoundset = record.getParentFoundlet () ;
& updateilider [WH
v ' @ Change to 'updatelI(,.) e
L ® Create method 'updateslider()’ i
a9 fToin I Rename in file (Ctri+2, R direct acce% *
=] * [z private void updateSlider() {
R * 4 // TODO Auto-generated method stub
= H E
(5 Problems &3 ' Fi
= _ |
0 errors, O warnings, 0 'II* (gl:g:'el; JEELE) |
Drescripkion com.servoy, j2db, dakaprocessing, IDisplayisReadonl
i

There we have our method stub typed for us:
private void updateSlider() {
// Auto-generated method stub
}

11/21

How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff

Remember what we did to set the slider values (see the ACTION_setSliderValues() in the script of our
bean test)? We are going to implement roughly the same thing here, but this time in Java:

/**
* Updates the slider from the values of the current Foundset
*/
private void updateSlider() {
if (validationEnabled && currentFoundset != null) {
setMinimum(l);
int max = currentFoundset.getSize();
setMaximum(max) ;
int tickSpacing = Math.max(Math.round(max/10),1);
setMajorTickSpacing(tickSpacing);
setValue(currentFoundset.getSelectedIndex()+1);

} else {
setMinimum(0);
setValue(0);

}

}

Of course, we only update the slider if we are not in find mode and if it's not null; otherwise we set its
value to 0O;
Note that we set the value to the foundset's selectedIndex +1, because the foundset is O based.

This is all well and good, but what about changing the selected index of the foundset when the user
interacts with the slider?

To do this, we will need to “listen” to the change of the value of the slider, and the easiest way to do
that is to implement a listener into our own class... so let's add a ChangeListener interface to our class:

public class ServoySlider extends JSlider implements IServoyAwareBean,
ChangeListener{

You can see that Eclipse first complains that it doesn’'t know about the ChangelListener interface, so
with our cursor at the end of the word, let’s type ctrl + space (cmd + space for Mac addicts ©).

Eclipse will add the following import to the top of our class:
import javax.swing.event.ChangelListener;

Fine! But Eclipse is still complaining, this time because we declare that our class implements the
ChangelListener interface while it is not fulfilling its contract! Easy again, let's use “quick fix” to add the
stub method:

74 public class ESaGHENEGESE extends Jolider implements IServoviwarebean, Changelistener §
35 @ #dd unimplemented methods 1 method(s) to implement:
36 fre @ Make tvpe 'ServaySlider' abstract)

av " [Rename in File (Ctrl+2, R direct access)
38 W

javax.swing, event,Changelistener statehanged

12/21

How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff

Now Eclipse has added the stateChanged() method to our class, and all we need in that method is to

update the index of our foundset like that:
@Override
public void stateChanged(ChangeEvent e) {
it (currentFoundset != null) {
currentFoundset.setSelectedIndex(getvValue()-1);
}

}

The ChangeEvent passed to us by this method have only a method to get the source of the event, but
it happens that the source will always be our own class. So we can ignore the event altogether and set
the foundset selectedIindex value to the value of our slider (-1 since the selectedIndex of the foundset
is 0 based).

Once we got the int value, we update our currentFoundset’s index to it (with a safety test checking
that it is not null).

That's the main method that will take care of all the interactions our users will have with the bean.
But we still need to set our class as a listener to the change in values. The easiest is to set it into a no
parameter Constructor (the one that will be called by Servoy to instantiate our bean).

This is our constructor:
public ServoySlider() {

super();
addPropertyChangeListener(this);

}

Now it seems that we are all done with our implementation, isn't it?

Well almost... | don’t know if some of you noticed but right now there is a problem to our
implementation... For those of you who did, bravo! For those who didn’t, don’t worry, it will come with
time (and a few Exceptions ;-)

Truly, I wouldn't recommend using the code as is...
Why?

Well, look closely at our updateSlider() method: This one will be fired by Servoy each time the record
index changes, by a call to the setSelectedRecord() method.

But in the updateSlider() method we are calling setValue(), which in turns will fire the stateChanged()
method, which will update the index of our foundset...

Meaning that Servoy might call again the setSelectedRecord() method and we will end up with an
endless loop, not the kind of situation your user will enjoy!

So let’s change our class of bit to handle this situation, in 3 simple steps:

First we will add a boolean to assert that we need to update our foundset index or not (depending
whether the event comes form Servoy changing the value, or from the slider itself), so we add this
boolean:

protected boolean ignoreUpdate = true;

We set it to true because the first time the stateChanged() method will be called, it will be done by
Servoy by way of the bean properties, not by the setSelectedRecord() method.

13/21

How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff

Then we add a method to avoid using setValue() directly and trigger the stateChanged() ourselves, by

setting our “ignoreUpdate” to true before setting the value:
private void setSliderValue(int x) {
ignoreUpdate = true;
setValue(x);

}

Then the last thing we need to do is to update our stateChanged() method to use this flag:
@Override
public void stateChanged(ChangeEvent e) {
if (TignoreUpdate) {
if (currentFoundset != null) {
currentFoundset.setSelectedIndex(getvalue()-1);
}
}

ignoreUpdate = false;
}

I think we're done coding. All we need to do now is to wrap up our code in a nice little jar and use it in
Servoy.

. Packaging and deployment of our Servoy-Aware bean

For Servoy to recognize our bean and put it in the “Place Bean...” dialog for us to choose, it needs a
special file to be present in the jar we are going to create now.

This file is called a Manifest file. Basically, it holds information for the user of the jar, declaring what's
in it. There is a lot of information on your library that can be useful for the software that is going to use
it, like indicating that your jar contains a main class (the one that will be used when double-clicking the
jar from your file system) in case your jar is a stand-alone program, the jarsigner utility will also hold
hash information about the classes inside the jar, when you sign a jar.

In our case, we only need to put one piece of information: that the jar contains a Java-Bean and which
class implements it.

So we will create a MANIFEST.MF file and put it into a META-INF folder of our project (standard place
to put it), this MANIFEST.MF file is a simple text file and we will put the following content in it:

Manifest-Version: 1.0

Name: net/stuff/servoy/beans/slider/ServoySlider.class
Java-Bean: True

The first line is required, so leave it there.

Then you have a line giving the fully qualified name of our class (with a “/” separator for the packages
instead of a “.”)

After that line we state that this class is indeed a Java-Bean.

14/21

How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff

Then you need to add a few line breaks. This is because Eclipse has a tendency to eat the mast few
lines — this happened to me a few times, so now | make sure it has enough to eat ;-)

That's it for our MANIFEST.MF file.

Let’s be sure that our project now has this simple structure in the Package Explorer:

f& Package Explorer &3 ?g Hierarchy | Too Mavigakor

=84 net.stuff.servoy, beans, slider
m ServoySlider.java
B JRE Swskem Library [jrea]
B Servoy
== META-INF
[Z| MAMIFEST.MF

Last thing to do is to export our project as a JAR. You know the drill:
Mew 3
Go Into

Cpen in Mew Window

Cpen Type Higrarchy F4
Shiow In Alb+Shifk+w B
= Copy kel
) Paste Chrl+y
Delete Delete
Build Path L4
Source Alt+Shifk+5 ¥
Fefackor Alt+Shifk+T
Eug Import...
« Refresh Fs

Close Project
Close Unrelated Projects
Assign Working Sets. ..

Run As r
Cebug As 4
Add/Remove Servoy Resources Mature

Add/Remove Servoy Solukion Nakure

Team r
Compare With 4
Restore from Local History, ..

Cpen Extern ¥
Properties Alt+Enter

15/21

How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff

Export

Select /—1

Export resources inko a JAR File on the local File system, I E 5 i

Select an export destination:

|t3-'|:|e filker text |

[General
== Java
8} 1/ fie
21 Javadoc
= Servoy
[= Team

® < Back —

Just make sure you export into the /application server/beans folder:

JAR Export

JAR File Specification -

Define which resources should be exported into the J4R.,

Select the resources to export:

I servoy-dlck ~ || O B dasspath;
= |:|'[5'J- ServoySlider [= .praoject
=[] (2 sre
B4 net.stuff,servoy, beans.slider
= META-INF
< |

| £

Export generated class files and resources
[JExport all output folders For checked projects
[]Export java source files and resources

[]Export refactorings for checked projects.

Select the export destination:

14R file: | C:\Program Files\Servoyiapplication_serveribeans\servay_slider.jar v| [Browse, ..

Options: %

Compress the contents of the AR, file
Add direckory entries

[overwrite existing Files without warning

'/'E\' < Back][Mext = ” Finish H Cancel

16/21

How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff

It's also a good idea to keep our jar export settings into a jardesc file, so make sure you do that:

JAR Export |:| |E| @|

JAR Packaging Options

Define the options For the JAR, export,

Select options for handling problems:
[C]Export dlass files with compile errars

Export class files with campile warnings

Save the description of this JAR in the workspace

Description File: | IServoySliderjservoy_slider, jardesc | [Browse, .,

@ | <Back | ez || Fnish || cancel |

And finally, don't forget to use check the “Use existing manifest from workspace” option, telling Eclipse
to use the one from your project (normally located in /ServoySlider/META-INF/MANIFEST.MF):

17/21

How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff

B ir Export |:|@E]

JAR Manifest Specification 5
Customize the manifest File For the JAR file, I

'1. =
Specify the manifest:
() Generate the manifest file
(%) Use existing manifest from workspace
Manifest file: | /ServoySlider/META-TNF/MANIFEST MF || Browse...

Lfgish ” Cancel]

That's it. When clicking finish, you will have created and exported the bean inside your Servoy /beans
folder and created a jardesc files for the next deployments.

It's time to restart Servoy to test our bean on a form
J. Testing our Servoy-Aware bean

Back in Servoy, this time in the usual “Form Design” perspective.
Let’s activate our “beans_tests” solution and open our “sliders” form in the form designer.

18/21

How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff

Choose “Place Bean...”, you should see our ServoySlider bean in the dialog, select it and click OK:
Select bean

|I:':.-'|:|e filker bext |

ITextPane
JToggleButton
JToolBar
ITree

[

KnobBean
Muolecule
ParallelZhart
PieChart
PlobChart
ScatteriChart
ScrollableBar

Slider
StackiChart
SurfaceChart
TreeWiew

UniversalZhart

1]

[gk H Canicel]
b

The bean is placed somewhere on the form with the usual 80x80 size :{
So let’s place it where we want it, and use the properties editor view on the bean to set its size and a
few other properties:

- size: 200,40
- paintTicks: true

-Or.der-Id. - Imr i |

-Cu:;mpe;m.f Id -

|u:u:-m|:-an1.r id |

I -Or.u:leru:-lal.:e - :-:-n;e-rdat; ------------- E]
:
. J [
hean 21 -

“_Eh:u:Iym

19/21

How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff

Now we can launch our smart client and finally see the end result of our efforts:

. beans_tests - sliders - Servoy Client
File Edit Wview Select Methods ‘Window Help

- «= H5H 5

‘ Order Id 12
T/ Company Id 1
.................. Orderdate 2009-06-20 [.]

y,

Total lines of code in the script: 0!
Total properties we had to set for the bean to appear like that on the form: 3 (location, size,
paintTicks)!

Now that’'s what | call easy ;-)

And that's how our efforts in encapsulating a regular Java-Bean into a Servoy-Aware bean is starting to
pay off, because from now on, each time you will want to use this bean on a form, you won't have to
script a line!

As usual, you will find the complete Eclipse project on the Servoy Stuff web site, at this url:
http://www.servoy-stuff.net/tutorials/utils/t02/v1/ServoySlider_EclipseProject.zip
(Import in Eclipse)

The compiled bean (targeted for java 1.5) will be available here:
http://www.servoy-stuff.net/tutorials/utils/t02/v1/servoy_slider.jar
(Put in you /beans folder)

And the little “beans_tests” solution will be available at:
http://www.servoy-stuff.net/tutorials/utils/t02/v1/beans_tests-vl.zip
(Unzip and import in Servoy 4.1.x)

OK, so that’s it? You really think we are going to keep our bean like that?
Nah! This is only version 1!

Of course, this bean is already quite usable as such, but it does need some polishing, don’t you think?

First, as you can see from the properties editor, there are still a lot of properties that are not really
useful (nor even usable), and we will first clean this up a bit...

20/21

http://www.servoy-stuff.net/tutorials/utils/t02/v1/ServoySlider_EclipseProject.zip
http://www.servoy-stuff.net/tutorials/utils/t02/v1/servoy_slider.jar
http://www.servoy-stuff.net/tutorials/utils/t02/v1/beans_tests-v1.zip

How to build a bean for Servoy - A step by step tutorial brought to you by Servoy Stuff

Then, if you look at the “elements” node of Servoy’s Solution Explorer, you will see it appear like that:
B Solution Explarer &5 Lo Mawigator =0
o Fiker (s e = S
=-{ ¥ Resources #
A Styles
+ % Catabase Servers
== all solutions
= a beans_tests
+ @ Globals
= % Farms

= sliders

E. controller

A4 ariables

=I-=8 elements

— (=]

F

bean_21 (Servoyslider)
= 25lider
2 company_id
B arder_id
9 orderdate
43 slider {15lider)
El selectedrecord
Be relations -

£ initialize

£ jsReadonly

£ setSelectedrecard
£ setvalidationEnabled
£ stateChanged

£ stopUIEditing

This is far from being clean, since we don’t really want to show our implementation, but we would
rather give some meaningful properties and methods access to our users via regular Servoy scripting.
So we will also address that.

Then as | said earlier, there are other use cases for a slider: one of them would be to act as an input
component. So that might well be another version of our slider.

And then of course, our bean right now is only usable in the smart client, when our goal would be to
use it seamlessly on the web client as well... This is yet another big area that we will need to tackle in
the next parts of this tutorial.

In the meantime, have fun with sliders all other the place ;-)
Feel free to comment, ask questions and bring on your suggestions, | always like to hear from you!

Patrick Talbot
Servoy Stuff
2009-07-02

21/21

	E. What is wrong with regular Java Beans?
	F. The ServoySlider bean project
	G. The IServoyAwareBean interface
	H. The ServoySlider class
	I. Packaging and deployment of our Servoy-Aware bean
	J. Testing our Servoy-Aware bean

